Статистика Ряды динамики Темпы роста прироста трендовые модели

13 Ряды динамики

Содержание курса лекций «Статистика»

Статистическое изучение динамики социально-экономических явлений

Статистика динамики

Процессы и явления социально-экономической жизни общества, являющиеся предметом изучения статистики, находятся в постоянном движении и изменении. Для того, чтобы выявить тенденции и закономерности социально-экономического развития явлений, статистика строит особые ряды статистических показателей, которые называются рядами динамики (иногда их называют временными рядами), то есть ‑ это ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В англоязычной литературе для временных рядов используется термин «time series». Ряды динамики получаются в результате сводки и обработки материалов периодического статистического наблюдения. Повторяющиеся во времени (по отчетным периодам) значения одноименных показателей в ходе статистической сводки систематизируются в хронологической последовательности. Значения показателя, составляющие ряд динамики, называются уровнями ряда.

Каждый ряд динамики характеризуется двумя параметрами: значениями времени и соответствующими им значениями уровней ряда. Уровни ряда обычно обозначаются «yt»: y1, y2 и т.д. В качестве показателя времени в рядах динамики могут указываться отдельные периоды (сутки, месяцы, кварталы, годы и т.д.) времени или определенные моменты (даты). Время в рядах динамики обозначается через «t».

Ряд динамики состоит из двух элементов:

1) уровня ряда (значения изучаемого показателя);

2) моментов (периодов) времени, когда фиксируется этот показатель.

Основные способы обработки рядов динамики:

1) укрупнение интервалов и расчет для них средних показателей;

2) сглаживание уровней способом скользящей средней;

3) выравнивание по аналитическим формулам.

Суть последнего способа заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени.

Ряды динамики, как правило, представляют в виде таблицы или графически.

Ряды динамики могут быть классифицированы по следующим признакам:

В зависимости от способа выражения уровней ряды динамики подразделяются на ряды абсолютных, относительных и средних величин. При этом ряды динамики абсолютных величин рассматриваются как исходные, а ряды относительных и средних величин ‑ как производные.

Ряды динамики абсолютных величин наиболее полно характеризуют развитие процесса или явления, например, грузооборота транспорта, инвестиций в основной капитал, добычи топлива, уставного капитала коммерческих банков и т.д.

Ряды относительных величин могут характеризовать во времени темпы роста (или снижения) определенного показателя; изменение удельного веса того или иного показателя в совокупности или изменение показателей интенсивности отдельных явлений, например, удельного веса приватизированных предприятий в той или иной отрасли; производ­ства продукции на душу населения; структуры инвестиций в основной капитал по отраслям экономики, индекса потребительских цен и т.д.

Ряды динамики средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.

В зависимости от характера временного параметра ряды динамики делятся на моментные и интервальные.

Уровни моментных рядов динамики характеризуют явление по состоянию на определенный момент времени.

Пример. Моментный ряд динамики, характеризующий численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г., представлен в таблице 13.1.

Таблица 13.1 ‑ Численность персонала строительной фирмы на 1-е число каждого месяца за первое полугодие 2009 г

Дата 1.01 1.02 1.03 1.04 1.05 1.06
Численность персонала, чел. 780 810 880 930 940 970

Следует помнить, что моментные ряды абсолютных величин нельзя суммировать. Бессмысленно, например, складывать численность персонала по состоянию на 1 января, 1 февраля и т.д. Полученная сумма ничего не выражает, так как в ней многократно повторяются одни и те же единицы совокупности.


Ряд, в котором уровни характеризуют результат, накопленный или вновь произве­денный за определенный интервал времени, называется интервальным.

Пример. Интервальный ряд динамики, представлен в таблице 13.2.

Таблица 13.2. ‑ Характеристика динамики объема розничного товарооборота

Дата 2004 2005 2006 2007 2008
Товарооборот, млн. руб. 28,3 31,9 38,3 42,3 45,2

Важное аналитическое отличие моментных рядов от интервальных состоит в том, что сумма уровней интервального ряда вполне реальный показатель, например, общий объем розничного товарооборота за 2004-2008 г.г.


В зависимости от расстояния между уровнями, ряды динамики подразделяются на ряды с равноотстоящими уровнями и не равноотстоящими уровнями во времени.

Ряды динамики следующих друг за другом периодов или следующих через оп­ределенные промежутки дат называются равноотстоящими, пример (табл. 13.1 и табл. 13.2).

Если же в рядах даются прерывающиеся периоды или неравномерные промежутки между датами, то ряды называются не равноотстоящими, пример(табл. 13.3).

Пример. Рядом динамики с не равноотстоящими уровнями во времени может служить объем экспорта продукции предприятия, представленный в таблице 13.3.

Таблица 13.3. – Динамика объема экспорта продукции предприятия

Годы 1993 1996 1998 2000 2004
Объем экспорта, млн. долл. 1110 1220 1320 1450 1640

По числу показателей можно выделить изолированные (одномерные) и  комплексные (многомерные) ряды динамики.

Если ведется анализ во времени одного показателя ряда, то ряд динамики изолированный (например, данные о производст­ве газа по годам). В многомерном ряду представлена динамика нескольких показателей, характеризующих одно явление.


Сопоставимость уровней и смыкание рядов динамики

Важнейшим условием правильного построения рядов динамики является сопоста­вимость всех входящих в него уровней. Данное условие решается либо в процессе сбора и обработки данных, либо путем их пересчета.


Рассмотрим основные причины несопоставимости уровней ряда динамики.

Несопоставимость уровней ряда может возникнуть вследствие изменения единиц измерения и единиц счета.

Пример. Нельзя сравнивать и анализировать цифры о производстве тканей, если за одни годы оно дано в погонных метрах, а за другие ‑ в квадратных метрах.


На сопоставимость уровней ряда динамики непосредственно влияет методоло­гия учета или расчета показателей.

Например, если в одни годы среднюю урожайность считали с засеянной площади, а в другие ‑ с убранной, то такие уровни будут не­сопоставимы.


В процессе развития во времени, прежде всего, происходят количественные измерения явлений, а затем на определенных ступенях совершаются качественные скачки, приводящие к изменению закономерностей явления. Поэтому научный подход к изучению рядов динамики заключается в том, чтобы ряды, охватывающие большие периоды времени, разделять на такие, которые бы объединяли лишь однокачественные периоды развития совокупности, характеризующейся одной закономерностью развития.


Важно также, чтобы в ряду динамики интервалы или моменты, по которым определены уровни, имели одинаковый экономический смысл.

Например, при изучении роста поголовья скота бессмысленно сравнивать цифры поголовья по состоянию на 1 октября с данными 1 января, так как первая цифра включает не только скот, оставшийся на зимовку, но и предназначенный к убою, а вторая цифра включает только скот, оставленный на зимовку. Уровни ряда динамики могут оказаться несопоставимыми по кругу охватываемых объектов вследствие перехода ряда объектов из одного подчинения в другое.


Несопоставимость уровней ряда может возникнуть вследствие изменений территориальных  границ областей, районов и так далее.


Для того, чтобы привести уровни ряда динамики к сопоставимому виду, иногда приходится прибегать к приему, который носит название смыкание рядов динамики. Под смыканием понимают объединение в один ряд (более длинный) двух или нескольких рядов динамики, уровни которых являются несопоставимыми. Для осуществления смыкания необходимо, чтобы для одного из периодов (переходного) имелись данные, исчисленные по разной методологии (или в разных границах).

Пример. Предположим, что в N-ом регионе имеются данные об общем объеме оборота розничной торговли за 2013-2015 гг. в фактически действующих ценах, и за 2015-2018 гг. ‑ в сопоставимых ценах (табл. 13.4.).

Таблица 13.4 ‑ Динамика общего объема оборота розничной торговли (млрд. руб.) цифры условные

Годы

2013 2014 2015 2016 2017

2018

Оборот розничной торговли, млрд. руб.

(в фактически действующих ценах)

19,7 20 21,2

Оборот розничной торговли, млрд. руб. (в сопоставимых ценах)

22,8 24,6 25,2

26,1

Сомкнутый ряд абсолютных величин (в сопоставимых ценах; млрд. руб.)

21,3

21,5 22,8 24,6 25,2

26,1

Сопоставимый ряд относительных величин (в % к 2005 г.)

92,9

94,3 100 107,9 110,5

114,5

Решение. Чтобы проанализировать динамику общего объема розничной торговли за 2013-2018 гг., необходимо сомкнуть (объединить) приведенные выше два ряда в один. А чтобы уровни нового ряда были сопоставимы, необходимо пересчитать данные 2003-2005 гг. в сопоставимые цены. Для этого на основе данных об объеме розничной торговли за 2005 г. в фактических и сопоставимых ценах находим соотношение между ними: 22,8:21,2 = 1,08. Умножая на полученный коэффициент данные за 2003-2005 гг., приводим их, таким образом, к сопоставимому виду с последующими уровнями. Сомкнутый (сопоставимый) ряд динамики показан в предпоследней строке таблицы 13.4.


Другой способ смыкания рядов заключается в том, что уровни года, в котором произошли изменения (в нашем примере ‑ уровни 2005 г.), как до изменений, так и после изменений (для нашего примера ‑ в фактических и сопоставимых ценах, т.е. 21,2 и 22,8) принимаются за 100%, а остальные пересчитываются в процентах по отношению к этим уровням соответственно (в нашем примере в фактических ценах ‑ по отношению к 21,2, в сопоставимых ценах ‑ к 22,8). В результате получаем сомкнутый ряд динамики, который показан в последней строке таблицы 13.4.


Та же проблема приведения к сопоставимому виду возникает и при параллельном анализе развития во времени экономических показателей отдельных стран, администра­тивных и территориальных районов. Это, во-первых, вопрос о сопоставимости цен срав­ниваемых стран, во-вторых, вопрос о сопоставимости методики расчета сравниваемых показателей. В таких случаях ряды динамики приводятся к одному основанию, то есть к одному и тому же периоду или моменту времени, уровень которого принимается за базу сравнения, а все остальные уровни выражаются в виде коэффициентов или в процентах по отношению к нему.



Аналитические показатели ряда динамики

На практике для количественной оценки динамики явлений широко применяется ряд основных аналитических показателей. К таким показателям относятся, абсолютный прирост при этом принято сравниваемый уровень называть отчетным, а уровень, с которым происходит сравнение – базисным.


Абсолютный прирост (∆y ) характеризует размер увеличения (или уменьшения) уровня ряда за определенный промежуток времени. Он равен разности двух сравниваемых уровней и выражает абсолютную скорость роста.

yабсолютный прирост – это разность между уровнями ряда динамики. Может быть цепным или базисным:

(13.1) – абсолютный прирост цепной

(13.2)- абсолютный прирост базисный

Показатель интенсивности изменения уровня ряда ‑ в зависимости от того, выражается ли он в виде коэффициента или в процентах, принято называть коэффициентом роста или темпом роста.

Коэффициент роста показывает, во сколько раз данный уровень ряда больше базисного уровня (если этот коэффициент больше единицы) или какую часть базисного уровня составляет уровень текущего периода за некоторый промежуток времени (если он меньше единицы).


Тр– темп роста – относительный показатель, получающийся в результате сопоставления двух уровней одного ряда динамики. Темпы роста могут рассчитываться как цепные, когда каждый уровень ряда сопоставляется с предшествующим ему уровнем:

(13.3) – темп роста цепной

либо как базисные, когда все уровни сопоставляются с одним и тем же уровнем, выбранным за базу сравнения (при умножении на 100 – в процентном выражении):

(13.4) – темп роста базисный

Между цепными и базисными темпами роста существует взаимосвязь: произведение всех цепных темпов роста равно последнему базисному.


 Т пр – темп прироста – относительный показатель, показывающий, насколько один уровень ряда динамики больше или меньше другого, принимаемого за базу сравнения:

(13.5)

При делении абсолютного прироста (цепного) на темп прироста (цепной) получим показатель, называемый значением одного процента прироста – А:

(13.6)- значение одного процента прироста

Пример. Произведем расчет и анализ динамики заключения браков в Омской области за 2000–2003 гг., используя формулы вышеизложенных показателей и данные табл. 13.5.  За базу сравнения примем уровень 2000 года.

Таблица 13.5 – Показатели изменения уровней ряда динамики

Показатели

Год
2000 2001 2002

2003

Заключение браков, единиц

13277 15130 15880

16458

Абсолютные приросты,  y

Далее в табл. 13.6 приведем всю совокупность показателей ряда динамики, позволяющую посмотреть взаимосвязи между ними.

Таблица 13.6 – Показатели изменения уровней ряда динамики

Показатели Год
2000 2001 2002 2003
1. Заключение браков, единиц 13277 15130 15880 16458
2. Темпы роста базисные: 1,14 1,196 1,24
2.1. коэффициенты
2.2. проценты 114 119,6 124
3. Темпы роста цепные: 1,14 1,05 1,036
3.1. коэффициенты
3.2. проценты 114 105 103,6
4. Абсолютные приросты, ед. 1853 2603 3181
4.1. базисные (2000 г.)
4.2. цепные (по годам) 1853 750 578
5. Темпы прироста базисные 0,14 0,196 0,24
5.1. коэффициенты
5.2. проценты 14 19,6 24
6. Темпы прироста цепные 0,14 0,05 0,036
6.1. коэффициенты
6.2. проценты 14 5 3,6
7. Абсолютное значение 1 % пр. 132,36 150 160,6

При изучении ряда динамики важно проследить за направлением и размером изменений уровня ряда во времени. С этой целью для динамических рядов рассчитываются следующие показатели.

Среднегодовой темп роста, ориентированный на достижение конечного уровня (yn) в исследуемом периоде, можно рассчитать как среднюю геометрическую из годовых темпов роста по следующим формулам:

(13.7)

Если же ориентация берется на достижение суммарного значения (объема) исследуемого показателя за определенный период, то для расчета среднего коэффициента (темпа) роста используется так называемая средняя параболическая вида

(13.8)

где значение k определяется по специальной таблице для расчета средних коэффициентов роста (снижения) по средней параболической.

Пример. Таблица 13.7 – Данные о вводе в действие жилой площади в городе N

Год 2002 2003-2008
Введено млн. кв. м общей площади, уi 62,5 394,7

Определим среднегодовой темп роста ввода в действие жилой площади за 2003‑2008 гг. (т.е. за 6 лет), ориентированный на достижение общей суммы введенного жилья за указанный период (т.е. 394, 7 млн. кв.м).

Решение. Используем формулу (13.8) средней параболической:

 

далее по таблице для расчета средних коэффициентов роста (снижения) по средней параболической в графе n=6 находим значение, наиболее близкое к полученному отношению (6,315). Это число 6,323, которому соответствует =1,015. Это искомый среднегодовой коэффициент роста ввода жилья за 6 лет. Отсюда, среднегодовой темп роста ввода в действие жилой площади за указанный период составлял 101,5%, а среднегодовой темп прироста был равен 101,5% ‑ 100% =1,5%.

Пример. Таблица 13.8 – Данные о прибыли на предприятии за 2000‑2005 гг.

Год 2000 2001 2002 2003 2004 2005
Валовая прибыль, млн руб. 566 521 447 428 391 367

Рассчитаем среднегодовой темп роста(снижения) за 2000‑2005 гг., ориентированный:

  • достижение фактического уровня в 2005 г. по формуле (13.7)

или 91,7%, т.е. ежегодно объем прибыли уменьшался в среднем на 8,3%;

  • если при расчете ориентироваться на общий объем, за 5 лет, то применим для расчета формулу (13.8):

Пример. Имеются данные о численности мужской части населения Омской области за 5 лет на начало года (табл. 10.11):

далее по таблице =0,91, т.е. среднегодовое снижение прибыли при общем объеме за 5 лет составило 9%.

На практике, т.к конечный уровень ряда может быть случайным(нехарактерным), чаще применяется расчет по формуле (13.8), где учитывается сумма уровней за n лет.

Прогнозирование на основе рядов динамики

Суть нижеприведенного способа (выравнивание по аналитическим формулам) заключается в том, что по эмпирическим данным находят теоретические (вероятностные) уровни, которые рассматриваются как некая функция времени, т.е.

Таблица 13.9 – Численность мужской части населения в 1999–2003 гг. (на 1.01.),

Год 1999 2000 2001 2002 2003
Численность

тыс. чел.

1028,8 1020,1 1010,7 999,6 989,8

Найдем линию тренда и, используя полученное уравнение, сделаем прогноз на будущее (определим численность мужской части населения в Омской области в 2006 году).

Предположим, что численность населения изменяется во времени по прямой:

(13.9)

Для нахождения параметров а0 и а1 решим систему нормальных уравнений, отвечающих требованию способа наименьших квадратов

(13.10)

Далее в табл. 10.12 рассчитаны необходимые для решения системы уравнения суммы: ∑,t, t2,yt. Годы последовательно обозначим как 1, 2, 3, 4, 5 (n=5).

Таблица 13.10 – Расчетные данные для определения параметров уравнения тренда

Год Число мужчин, тыс. чел. yi Условное обозначение времени, t t2 y·t Уравнение тренда
1999 1028,8 1 1 1028,8 1029,5
2000 1020,1 2 4 2040,2 1019,65
2001 1010,7 3 9 3032,1 1009,8
2002 999,6 4 16 3998,4 999,95
2003 989,8 5 25 4949 990,1
5049 15 55 15048,5 5049

Из системы уравнений получим a1 = −9,85; а0 = 1039,35;

Отсюда искомое уравнение тренда

Для 2006 года t = 8; следовательно,  То есть по прогнозу численность мужской части населения в Омской области в 2006 году составит 960,55 тыс. чел.

Для решения данной задачи можно использовать и второй способ, упрощенный. Если время t обозначить так, чтобы ∑t = 0, т.е. счет вести от середины ряда, то система упростится и примет вид

(13.11)

В этом случае каждое уравнение решается самостоятельно:

(13.12)

(13.13)

Необходимые для расчета параметров уравнения суммы приведем в табл. 10.13.

Таблица 13.11 – Расчетные данные для определения параметров уравнения тренда

Год Число мужчин, тыс. чел. yi Условное обозначение времени, t t2 yt Уравнение тренда
1999 1028,8 -2 4 -2058 1029,5
2000 1020,1 -1 1 -1020 1019,65
2001 1010,7 0 0 0 1009,8
2002 999,6 1 1 999,6 999,95
2003 989,8 2 4 1979,6 990,1
Итого 5049 0 10 -98,5 5049

Тогда  и

Уравнение тренда в этом случае будет имеет вид

Для 2006 г. t = 5; следовательно,

Эта величина условная, рассчитанная при предположении, что линейная закономерность изменения численности мужской части населения, принятая для 1999–2003 гг., сохранится на последующий период до 2006 г.

Контрольные задания.

По данным статистических ежегодных изданий: «Российский статистический ежегодник», «Россия в цифрах» и т.п. выберите несколько показателей, постройте и проанализируйте ряды динамики, найдите линию тренда и, используя полученное уравнение, сделайте прогноз на 3 года вперед.

АНОНС…полный текст будет опубликован позднее… в соответствии с графиком занятий

Содержание курса лекций «Статистика»

Ссылка на основную публикацию